LECTURE 5
MATTER AS A WAVE

I. Electron Diffraction Experiment (1927)
 A. Wave-like properties of e’s
 B. Calculating \(\lambda \) from \(\theta \)
 C. de Broglie wavelength for matter waves

II. Schrödinger’s Equation
 A. Equation of Motion for Matter Waves
 B. Derivation of Schrödinger Equation
 1. Wavefunction
 2. Energy
 3. de Broglie wavelength
 4. Hamiltonian operator